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XIIL On the Motion of Two Spheres wn .o Fluid.
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THE general theory of the motion of a single rigid body through an infinite incom-
pressible fluid is well known, chiefly through the work of TmHoMsoN and TaArr® and
KircurBOFF,t and we are able to calculate numerically the results in the case of the
sphere, the ellipsoid, and a large number of cylindrical surfaces. The theory of the
motion of two or more bodies in a fluid has naturally not made the same progress,
and we are unable to determine the form of the expressions involved for the general
motion of any particular solids. So far as I am aware, the first attempt was made by
STOKES, in a paper read before the Cambridge Philosophical Society in 1843, entitled
“On some cases of Fluid Motion.”} In this paper, amongst other problems, he con-
siders the case of two spheres. He determines the instantaneous velocity potential
for two concentric spheres and for two concentric cylinders with fluid between them,
and finds that the effect of the fluid is to increase the inertia of the inner sphere by

3 3
a mass =1§abgt2(f; of the mass of the fluid displaced, and that of the inner cylinder

b +a?
*—a?
He also approximates to the cases where one sphere is moving in the presence of
another in an infinite fluid; and also in the presence of a plane, the method used
being first to calculate the velocity potential for any motion of the points of the
plane, and then suppose them actually animated with velocities equal and opposite
to the normal velocities of the fluid motion at those points if the plane had been
removed. He applies the same method also to the consideration of the motion of
two spheres. In a note in the Report of the British Association at Oxford, 1847,
he states the theorem given by me in § 4 relating to the image of a doublet whose
axis passes through the centre, and mentions that this will easily serve to determine
the motion. In 1863 Herr BsERkNES communicated a paper to the Society of
Sciences at Christiana, on the motion of a sphere which changes its volume, and in

by a mass of the mass displaced, a, b, being the radii of the spheres or cylinders.

* Nat. Phil,, p. 264, new edition, p. 330.
¥+ Borcmarpr, Bd. 71.
t Camb. Phil. Trans., vol. viii.
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456 MR. W. M. HICKS ON THE MOTION OF TWO SPHERES IN A FLUID.

which he approximates for the motion of two spheres. I have not been able to see this
paper, nor some others which he presented to the same Society at some later periods ;
but he has given an account of his researches in the ‘Comptes Rendus,’* together
with some historical notices  on the development of the theory. He does not seem,
however, to have been acquainted with the important paper of STokEs above referred
to.t In 1867 TroMsoN and Tarr’s ¢ Natural Philosophy ’ appeared, containing general
theorems on the motion of a sphere in a fluid bounded by an infinite plane, viz.: that
a sphere moving perpendicularly to the plane moves as if repelled by it, whilst if it
moves parallel to it it is attracted. In a paper on vortex motion in the same year
(Edin. Trans., vol. xxv.), THOMSON proved that a body or system of bodies passing on
one side of a fixed obstacle move as if attracted or repelled by it, according as the
translation is in the direction of the resultant impulse or opposite to it. In the
‘ Philosophical Magazine’ for June, 1871, Professor GurHRIE publishes some letters
from Sir W. THomMsoN on the apparent attraction or repulsion between two spheres,
one of which is vibrating in the line of centres. Results only are given, and he states
that if the density of the free globe is less than that of the fluid, there is a ““critical ”
distance beyond which it is attracted, and within which it is repelled. The problem
of two small spheres is also considered by KircHHOFF in his ¢ Vorles, ii. Math. Phys.,’
pp. 229, 248. In his later papers BsERENES takes up the question of ““ pulsations” as
well as vibrations. Of solutions for other cases than spheres, KIRcHHOFF has con-
sideredf the case of two thin rigid rings, the axes of the rings being any closed

* ¢ Comptes Rendus,” tom. lxxxiv., p. 1222, &e.

1 Not only Herr BIERKNES, but several writers on the Continent seem to be unacquainted with this
paper of St1oxEs, and also with GrerN’s papers. Kircruowr, in his ¢ Vorlesungen iiber Mathematische
Physik’ (second edition, p. 227), says that Diricnuer first treated the motion of a sphere in a fluid in the

Monatsberichte der Berl. Akad.” in 1852, and CrEsscm that of the ellipsoid in 1856, in ¢ Crelle,” Bd. 52.
BsErkNES also repeats the same statement, and CrepscH in his paper regards DIRICHLET as the first to
solve for the sphere. In his paper DIrICHLET says: “ Wie es scheint, ist bis jetzt fiir keinen noch so
einfachen Fall der Widerstand, den ein in einer ruhenden Fliissigkeit fortbewegter fester Korper von
dieser erleidet, aus den seit Euler bekannten allgemeinen gleichungen der Hydrodynamik abgeleitet
worden.” The fact is that GrEEN in a paper read before the Royal Society of Edinburgh in 1833,
entitled ¢ Researches on the Vibrations of Pendulums in Fluid Media ” (Trans. Roy. Soc. Edin.; also
published in the Reprint of his papers, p. 313), and written without the knowledge of Porsson’s paper of
1831, ¢ Sur les mouvements simultanés d’'un pendule et de l'air environnant,” treated of the motions of
an ellipsoid moving parallel to one of its axes. He obtains the velocity potential as an elliptic integral
for a motion parallel to an axis, which also of course contains implicitly that for the sphere. He shows
that it is necessary to suppose the density of the body augmented by a quantity proportional to the
density of the fluid. For the case of the spheroids moving in their equatorial planes or parallel to their
axes he completely determines this quantity, whilst for the sphere he finds that it is one-half the mass of
the fluid displaced. The first place in which I have been able to find the well known form of the velocity
potential for a sphere is in Sroxms’ paper of 1843 before mentioned. He obtains it as a particular case of
a more general problem, and refers to it as the “known” value for the sphere, The equations of the
linesQ of flow were, I believe, first given by DIRICHLET,

1 Borcmaror, Bd. 71,
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curves and the sections by planes perpendicular to the axis being small circles of
constant radii, and he arrives at the result that their action on one another may be
represented by supposing electric currents to flow round them ; and I have recently
solved the problem of the motion of two cylinders in any manner with their axes
always parallel. The velocity potentials for the motion of the two cylinders are
found in general as definite integrals, which, when the cylinders move as a rigid
body, are expressed in a simple finite form as elliptic functions of bipolar coordinates.
The functions involved in the coeflicients of the velocities in the expression for the
energy have a close analogy with those for spheres arrived at in the following
investigation.

1. Our first aim will be to find the velocity potential for the motion of the fluid in
which a sphere is fixed and in which a source of fluid exists. By the image of the
source in general is meant that collocation of sources or sinks within the sphere which
produces outside of it a fluid motion which in conjunction with the original source has
no normal motion across the sphere: in other words, that “mass” of positive or
negative sources which produces across the surface of the sphere a normal flow equal
and opposite to that of the outside source. When this “image ” is found, the way is
theoretically clear to finding the velocity potential when two spheres are fixed in the
fluid, and thence, by distributing over the surface of the spheres sources proportional
to the normal motion of the surface at that point, to determine the velocity potential
when the two spheres are moving in any manner. In the case of an electrical point
the image is, as is well known, a negative point at the inverse point of the other. In
the case of fluid motion the image is, as will be shown, a positive source at the inverse
point, together with a negative line sink stretching from this point to the centre of
the sphere.

2. Take O the centre of the sphere for origin and let the axis of z pass through the
source S. Let the radius of the sphere be «, and the distance of S from the centre
be 6. Then the velocity potential will clearly be symmetrical about O S. The
velocity potential for the unit source at S can be expanded in the series

1 1
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which holds good for points where r<b, whence when r=a(<b) the flow into the
sphere at any point (6) is

o quy,"“l

2 T patl

Expand the potential due to the sources, &c., inside the spheres in a series of
spherical harmonics

V=35 V(r>a)
Hence the flow out of the sphere, for points just outside, is
® 1
—20 (n+ l)gYn

and this must be equal to the other, whence

on [a\ntl

Y=ot <5> P, and Y,=0
and

o T a2n+1

V==—3, n4+1 (br)n+l
602"+1
2’1 (b )n+l ﬂ+21 +1 (bq,.>n+l

Consider

_ 74 — s M A<a
X= /P cos 40~ F =0 il T s g
the potential for a source u’ at a point on O S inside the sphere at a distance \ from

the centre. Then
n+1
J( —__> d)\_ 21 . 7\;z+1 P,

Comparing this with the expression for V, we see that if we make A:% and

p.'=% X source

I T
V= _5 21 g+l P"+7\‘ j’oxdh_ ”

@ 1 lf‘ an

= Th /P os 01N T a) gn/ P — 20 cos BN

2
i.e., V is the potential of a source at the distance ng from O whose magnitude is equal
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2
to % of the source at S, together with a line sink extending from O to the distance =

the line density of the sink being i—x source at S.
Performing the integration for V, we find finally that the whole velocity potential

for a unit source at S is

1 1 @ 1
S A O > ey B - R e vepstey W

1 A—7cos 0+ NV cos §+\
+a log r(l—cos)

where XE%

It is easy to verify this value for ¢ by direct differentiation.

If we apply the same method to find the velocity potential for the motion of fluid
inside a sphere under the influence of a source inside, the integral becomes infinite
unless the source is zero. The case is of course physically impossible since if fluid is
generated within the sphere it must pass through the boundary. But if we also place
an equal sink at any point within, the motion is then possible, and the expression
becomes finite. S being the source let S’ be its inverse point with reference to the
sphere, and S” any point on the line 8 §” produced to infinity. Then the ‘“image” of

S is a source %a at §’, and a line distribution of sinks of line density ’g from 8’ to
infinity. Let S; be an equal sink, then its image and that of S will produce potentials

with finite derivatives. In fact, the potential at P will be

b S’P 1OgOS’ —rcos 0,+ 8", ljl—cosﬁ

1 e a 1 OS'—7cos §+SP 1— cosd,
p=p {SP SPTE }
where 6, 0, are the angles O P makes respectively with O S, O S,.

3. The expression found for the motion when there is a single source outside the
sphere enables us to deduce the velocity potential for a single sphere moving through
an infinite fluid. Taking the direction of motion as the axis of «, from which we will
suppose 6 measured, we may arrange a surface distribution of sources proportional to
cos 0dS and integrate over the surface of the sphere, or we may employ the simpler
method used in a paper in the ¢ Quarterly Journal of Mathematics’ for March, p. 128.
The first gives us the velocity potential when the sphere moves by an integration
which would be laborious. The other gives directly the potential, when the sphere is
fixed and the fluid moves past it, by means of an easy differentiation. Putting a
source at x=b and an equal sink at w= —b, let these move off to infinity, increasing
indefinitely as they do so, yet so that the motion at a finite distance from the origin
is finite. In the limit we clearly get the case of fluid flowing past the sphere.
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We have to find the limit when b= ;}%:k of

1 1

= —'“{%iﬂizbr 0os 0402 \/17+ 2br cos 0 + 17

@ 1 1
+5 <\/7"‘~’—_2M" cos 0+N" /17 + 2 cos O+ )»2>

1 o A7 cos 0+ =2 cos 04N 1+ cos 0}
@ O N+7eos O+ /1 + 20 cos O+ 1— cos 0

When 0 is large and N small this is easily shown to be

Foos® | A
4);:——55{27- cos B4 —|~Z+ o }

oY
2
Hence the limit is

)
qS"—" — <2.’L’+"7;3‘ >

If the velocity of the fluid at an infinite distance parallel to @ is u towards the

origin, then
2k=u

Also impressing on the whole system a velocity w, the sphere moves with velocity u in
an infinite fluid, and the potential function is

¢ aux b cos 6
273 292

The well-known form of ¢ in this case.

4. If now two spheres A, B are present in the fluid, and we consider the series of
images resulting from the first image in A, we see that they very rapidly become
extremely complicated, e.g., the first image is a source and line sink ; the image of
this in B consists of (1) a source and line sink, (2) the image of the first line sink or a
line sink (segment of a circle), and an area source bounded by this last line sink and
two straight lines from the centre. It is, therefore, hopeless in this way to find first
the velocity potential for a source in the presence of the two spheres, and thence the
potential for any motion of the spheres. But now suppose A fixed and B moving in
any direction. If A were not present the velocity potential of B would be that due
to a doublet at its centre, whose axis lies in the direction of the motion of B. The
effect of the introduction of A will be to produce a series of images of this doublet,
lying inside A and B. This method dispenses with the necessity of integrating over
the spheres when we have found the velocity potential for the doublet. In the special
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case where B is moving in the line joining the centres, the image becomes simplified
and reduces to a single doublet. For let us find the image of a doublet whose axis
passes through the centre of a sphere.

The doublet is formed by allowing an equal source and sink P, P’ to indefinitely

approach one another, their magnitudes increasing indefinitely, yet so that w.PP’ is
finite. Now let P, P’ lie on the line through the centre of the sphere, and let Q, Q’

be their inverse points ; moreover, let the limit of w.PP'=%k. Then the image of P, P’

consists of a source = O 2 at Q, a sink £ OP’ at Q, and a line source (supposing P outside
P, and therefore Q' outside Q) along Q Q' with line density 's, also the quantity

g'QQ', together with the sink at Q, is equal and opposite to the source at Q, and we

may suppose it added to the sink at Q, when they become equal. Now as P, P’
approach to coincidence so do Q, Q’, and the image of the doublet k at P becomes the
doublet at @, whose magnitude is the limit of

g 0 QQ . ad
oﬁ'QQ 0P PP kOPS’

2.e., one of opposite sign and magnitude <5P> X that at P. The same result can

easily be shown to follow from the analytical formula in § 2.

The case where the doublet has its axis perpendicular to the line joining the centres
has more analogy with the case of a source. The image here consists of a doublet of
the same sign at the inverse point, with a trail of doublets of opposite sign extending
to the centre.

Fig. 2.

Let, as before, P, P’ be equal source and sink, Q, Q' their inverse points with respect

to the circle.
Then at Q, Q' we have a source and sink of magnitude 2, and in the limit we have

a doublet

OP’

poQQ _
o=+ (or)

Also, if R, R’ be corresponding points on O Q, O Q/, we have a line density -—S at

MDCCCLXXX., 30
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R and +g at R, Consequently when P, P’ approach indefinitely so do R, R/, and
we get a line doublet along O Q, whose line magnitude at any point R 1s the limit of

O'O
a~18-!

K RR/= K, OR
a a0

a

t.e., proportional to the distance from the centre.

Fig. 3.

5. Supposing that the positions of all the images of the doublets and their mag-
nitudes are known when the sphere A is moving along the line B A, we proceed to
find an expression for the kinetic energy. Let p, be the distance of the n® image in
A from A, and o, the distance of the n'h image in B. Also let the magnitudes of the
doublets there be w,, v, respectively. Let ¢ be the velocity potential of the motion,
and ¢,, ¢’, the parts of ¢ due to u, and »,. Then denoting the kinetic energy by T

I[‘IS |8¢dS—— - ZmﬁuJ‘ [¢]sin 6 cos 6d6

where [$] is the value of ¢ at any point (a.6) on the sphere. Now ¢p=3¢,+3¢’, and
the part of T due to ¢, will be

"u.(a cos 8+ p,) sin 0 cos 0 d0
o {@®+2p,acos 0+ p2}

2T = — 2176&214

. +1 - d
= —2ma?p,u (a}i i f;f; e
Now
rl (prompdn ___ d Fl pilp
4 2o} T ) g o

dp 3p9a2{(p+ )(P2+a’2—pa) (P'“)(Pz""a‘g"{'f)a)}

When p=p, p,<a and the above becomes

a 2/) 2
(Zp 3a2 342
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Similarly when p=o, 0,>a and it becomes

d 2¢ 4o

dp'3p*  3p°

and
. w0/ Vn
2T = —3m.uss w4 Smalus; <0~,13>

463

Also y the original doublet =‘—“;“, and if M, be the mass of fluid displaced by the

sphere A

‘ w Mn ® Vnas
2T=%‘M1u2{ 143, y } +M,u?3] <—;;;;>

But from what has been shown before
a3
M= — a’_'ngVn

Hence
2T=%M1u2{ 14857 (";) } .

By § 4 we have, if ¢ is the distance between the centres,

a3

C— Pu—
Also
e, v
Pn—a_" 0= = Py
Hence
— ab >3 _<__an >3
’*"‘(w(c—pn-o, 1=\ a(o—pay)) H11
S S -
o) 1e=pu) -~ Ce=pr)e
Again
a? a?
P1z=;’;= 2
€= Pn—y
whence

¢t —b?

a? 0
PrPi—)=— —_é”“Pn - ;pﬂ_l +Clr =0

30 2

(1)



464 MR. W. M. HICKS ON THE MOTION OF TWO SPHERES IN A FLUID.

Put p,=u,+w, and choose = so as to make the constant term vanish. To find @

we have

. w2+02__bi3
A

x4+ a?=0

Now let C, C, be the inverse points of the spheres, and O the middle point of
C,C,. PutC, C,=2\. Then

SN ST S -

OA=\/)\2+a2=&i£;~—=rl say . . . . . . . (2
D )]
c=n+7,

. . . P
Further, P being any point on the sphere A, denote the constant ratio ng) by ¢,
1
and let g, be the similar constant for the sphere B. Then

At —a_ 7\,+71 @ j
D=\

A

‘ r

A—rytb b 7=
=N —b Aty b J

The equation to determine x now becomes

2t —2rx+a*=0
The roots of which are 74\
Choosing the positive sign, the equation of differences becomes

a? a?
’L@,’len_l - w2 - Ag /?/0”+ ﬂCl - ; ’Ilz”_l = 0

L. 1
Now a?*=ux,%, whence writing ~ for u, we get
1% oy

&o(c—12,) ¢

Tale—n) T m(o—ay)
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C—®y  To+MA -
PN £
Ty Ty

% __nth

H_nTa )

x, 7y Il
¢ __' ¢

z(c—my) (1 +N)(ry+N)

c

—Vp &
(B0 ==

and
1
— M
vi=Ag 2\
and
1
e
_— ﬁ + qun
But
n=0 p=0
‘A:—l—— 1 — =\ _ 1
o 2N M 2M(r4+N) T 20g®
and
. 2
Pr=0q " 1 _gl—Qq%
]_ — an
- (7 17— )‘)1 —91—292”
Also
2N
e=pe=ntr =N S
— (o 1—g»*
- (7 2+>\)1 _ql—QQQn
b pu 1— ql—2q2n-2 pn—-l
R = T = e 8
ac —Pu1 1 __g1~2q£m q P y
and
— [ p P12 Pumg &»}3
Ho {9% Ps Puer o) F

= {Gzacry
. 1 _ql—Qq‘hz
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‘Whence

2T=%Mlu2{1+3(1—q1‘2)321(*JLY}. B
1
We shall denote, in what follows,

3 3
(L= ™) (’f‘_‘%@;)

TN

by the functional symbol Q( >

6. If the sphere B is also moving along the line AB, the kinetic energy of the
fluid will be of the form

2= 1M 143Q g ) -+ M 145Qge) 1+ L

It remains, then, to find the value of L.

It is easily seen that L depends on the part of ¢ belonging to the images of B’s
motion taken over the sphere A, together with that belonging to the images of A’s
motion taken over the sphere B. Let now dashed letters apply to the images, &c.,

of the B system, then using the results in § 5, the part of L due to the integration
over A is

4 o 4 8 o vn
—g‘ﬂ'ulzl M n+'§777063u120 < ; g>

But as before, remembering that now the original doublet is in B,

[_a \3,
/.,(, n— \a‘ ) Vo1

P LA S AN
K= ¢ V=g 2

and ;
Ly=~%7u,37 (3p",)
a’t? ) ,U"u
oot —'277'%1“2 ’03 "‘ 21 (’b&)
and
, ZJP/n 3 ’
o= {a(c-—p’n-l)} fonmt
__(Il>3”"3{ PazPu—1~~--P2 }3 ’
T \e (e—=plu-y) oo (e—p)
Now as before
, 1
pn=0aq,~+

A e
nx+ Aq
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2
and determining A by the condition that p1'=% we shall find

2‘)\‘ 1— QI2q2n
p =aq =7 qﬁn (’)”1 - )\) 1— qﬁn
and
—q 2(1211,
C=pim= (7”2+)\) 1— g12n—-2
b P ’“ 1— QQJL~
ae— P’u-—l—q 1 _q%
,_[A=pp1?
lu' [ { ‘l —_— 'an IL 1
and

ab(l — 2) gn—l 3
Lj=— 27ru1u22{ —;——i—:“qzn}

n 3
—_ —167Tu1u2)\ 21 ( qén)
Similarly L,= same quantity.
Therefore, denoting by M’ the mass of fluid contained in a sphere of radius unity

L=—47uu,Q (¢) = — 8Mu,u,Q’'(q)
where
2)\1941, 3

Qo=s(2L) ...

g2n

Tables for Q and Q' are given at the end of the paper for equal spheres, and for the
case of a=2b.

7. When the sphere A is moving perpendicularly to B A, the original doublet is one
perpendicular to the line B A, as also its images. Suppose A is moving along the axis
of #, A B being the axis of z. Then the normal velocity at a point P on the sphere A
is vsin 0 cos x, («.0.x) being the polar coordinates of P; and the kinetic energy is given
by

2T=—a? f .( [¢]sin® 6 cos x dbdy

Let p be the magnitude of a doublet at a point distant p from the centre of A; the
part of ¢ depending on this is

wrsin 0 cos y
{72+ p*+2pr cos 0}}

and the part of 2T depending on this is
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" j 2 sin® 0 cos® ydfdy

— B
pet v'( o {®+p*+2pa cos 0}

0
— 3 j'" __ sin®0dd
= TRTEY o {&+ p*+2pa cos 6}

The integral of which is

_gggj[(ﬁ_{_ﬁ){(p-|—a)-—(p'a,) }—paiptat(p-a)}]

Writing v and o for u, p for doublets outside the sphere A, we obtain

whence

2T=-Mluz{§3+0%}

3
Now any » at the distance o produces an image in A consisting of a doublet v<g>

2
at a distance %, together with a line sink stretching from this to the centre, whose

line magnitude is -—a%_x distance from the centre. Hence the whole amount of the

a\3 v [a®\? a\?
o2 =127 =p(2
a ao\o T \o

Now every p except w, forms part of an image of some », and of that » only.
Hence

image is

and

M,v
2T=——"{po+33p}

=%M1v2{1+32<i>}. R (o

The 3 extending to the whole mass of vmages inside A.

8. If A has also a motion along B A, together with one perpendicular to it, T has
no term depending on u, v; for it is clear that if the sign of v is changed, then the
kinetic energy must be the same as before.

If B moves also perpendicularly to B A, T will have additional terms in v? and
vy, v, The coefficient of w,* will be analogous to that for v,% whilst that for v, v,, as
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in the case of uy, u, consists of two parts, depending on the integration over the two
spheres. As in the case of L this coefficient L" is

Lity=—tm2 |+ <§>3} — gz { vhp @%}

dashed letters referring to the motion of B, p, v referring to images within A and B
respectively, and o o denoting distances from the centres of A and B. This may be
reduced as in the former case to

L'vywy= — darv; 3, () — 470,34 (v)

the u” being the images in A of B’s motion perpendicular to A B, and » the images in
B of A’s motion perpendicular to A B.

LI’Ul’02= - 477’017/021 <#"—> - 4‘.77"02‘“«02 < Ii>
Yo Fo,

where vy, j1, are the original doublets at the centres of B, A, w.e.

Vv adv
= e
whence
L, = %Mgzl </E_> %MIE ("Z{> . . . . . . . . (8)
Yy Mo

’

. . . . 14 .

in which last the ratios g—, - do not contain v, v,
0 0

In the case of general motion of two spheres, each will have three components of
velocity, u,, v, Ww,; Uy, vy, Wy; and, in general, the expression for the kinetic energy
will contain 21 terms. In the case in question we can easily see that the coefficients
of 12 of these vanish. For consider the term in w,, w,—suppose v;, w;, Uy, v, all zero;
the energy, from the symmetry of the motion, must clearly be unaltered if we reverse
the direction of w,. And this can only happen if the coefficient of ww,=0. In this
way we find the terms all vanish except those in )% v,%, w\? wg? v wy, u) Uy, v ¥y,
w, wy. Also from symmetry the coefficients of v)?, v,%, v, v,, are equal respectively to
the coefficients of w?, wy?, w, w,. ‘

In what has gone before we have expressed the coeflicient of w,? uy?, u; u, in terms
of quantities determined by the radii and distance of the spheres, and have shown
how the coefficients of the other terms depend on the images of the motion, whereby
we can without much difficulty approximate to their values when the distance of
the spheres is large compared with their radii—or the distance between their
surfaces is large compared with the radius of one of the spheres. We pass on to

MDCCCLXXX, 3P
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consider the case where one sphere is inside the other. An approximation to the
value of the coefficients of »,% and v, v, is given in § 15. It is remarkable that in the
case of two cylinders the coefficients of the terms in w? ¢* are equal, while those of
1 uy and v, v, are equal and opposite. But this is due to the fact that in a cylinder
the image of a doublet (or a source) is a single doublet, whatever be the direction of
the axis of the original doublet.

9. If S S, be in a line through the centre the infinite trail of images of § 2 cuts
out, and we are left with an image source and sink, and a line sink between them,
supposing S to be outside S;,. Let now S and S, approach together and become a
doublet whose strength is p. Then we shall get a single doublet as its image whose
strength = 7 il Y Sszl = /12;3
once from the case of the external doublet in § 4, considered as the image of its
image.

as in the former case. This we might have deduced at

If we proceed to find the kinetic energy, as in the previous case, we must clearly be
led to the same form for the result, viz.: when A is moving with a velocity « from B

e ()

where w, . . . . are the strengths of the doublets inside A alone. But in this case the
relations between the u, p, o are given by the equations (a, b being the radii of sphere)
aS
M= ;7}’31}”,
b \3
Yy _<0+Pn~— > Fon—1
“2 2
pi= ¢+ o= iy
whence
0(,2
=
—C
¢+ pa—y

PrPr—1 + Pn + Pu—l + at= 0
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which differs from the equation for external spheres in having —p for p for all values
of n. We may therefore use the same solution and writing here

OA=VN+&
VNFE— VN Fai=c
b2_ 42 o2
OA:——;TL=7"1
VP4 —a?
OB= 5 =4
(J-':-'?Ag_?l
_n—h_ ¢
D= T
To—A b

;_»_ ot
7 72
1— q%
pn= (r,— )‘) 1—glg™

which is the same form as before, only ¢ is the inverse of its former value.
And, as before,

2T= ‘Mluz{ 14+3(1—q))°=r < :gig%)?’}

=M {143Q(q.9,)}

A table for Q when b=2a is given at the end of the paper.

10. It will be well here, before passing on to the consideration of the motion, to
make a short digression on the properties of the functions Q and Q".  In the first place
it is easily seen that the series for the @ and Q' functions are both convergent, even
up to the case when the spheres touch, or ¢g=1; for the ratio of the n'* term to the

n—1% ig
_..q ‘292}1«'2
{q -0 -—29271

and this is always less than ¢% which is less than unity, except in the case when the
spheres touch. In this particular case the 7't term tends to the limit

1 3
dq)
1—n=*
( g

3P 2
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and the series is still convergent. The value of d%z is the limit when A=0 of
1

G—¢_  a+d
1—q¢, b’

Hence when the spheres are in contact

b : 1°\3 d3
® LN 1 3 . .
Q== <n(a+b)+b>3—m % <n+m> =—yislog T(I4a) . . . . (9)
if .’Jc=———~b The values of this may be found from LEGENDREs table of the

a+0b
log T-functions.
If the spheres be equal =% and

s 1w _
Q—2](2n+1>3——b3 ]. . . . o . . . . . (10)
Now
Ss=1+2_13+§}3+ ... =1202056903159 . ...
=¥, +18,
whence

S, =18,=1051799790264

] . . . 1
When the spheres are equal.qzzé. If in this case ¢ denote either ¢, or .
1 1

) oA 2 (1210 3
A== ()

11. We may easily express the general term in terms of », a, b. For writing it

in the form

173
91"‘_1

Q= PG =u,’ suppose,
¢ n

we get at once from the relations (2), (3), (4)

2nah"
R Y R RSV eV

U=

which, since r,=7—7, and r?*—\=q?

_ AN
T (AN N =P — (=N (=N —
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Now

N T i
rry—ar= ——‘2—‘—— — Q"= 2" =-§ suppose,

also
_ (P +a? =0 —4aPr®  at—4a®?

M= (r2—a)’=

4 - 4
We shall further write 4a??=a*
Then
o Db
Wy — ? 22 n 2 2 "
A T
_ 2”6(;“1)”
T e ‘7_‘ Q= dp—2 2 [ — N
217 12{ Bl =T AT 2(2N°) 1’} +2]2}5#|n"ﬁ‘5jow (2\r)%
2naubn 2”6(;”1)"
- & —_{(n4-1)2P+2(n—2p) P}t —at)r SR
Zp+1 jn 2p
and
—_— V_b [ZZ (— 1)’1 2 1) e D912 p20—=4g=2 , 4g
v,,—2212p+1 = !p_g{n+1w +2(n—2p)a®ta o
Denote
s ‘n | P
7=12p+1|n—2p—1'g [p—g
by Sn.{/
Then
U, =3 1{ S, &4 428, @2 ot
Let
y— A+ uyr—(1— ﬁ)“_n n(n—1)(n—2) 2)
ARV - 3
[
+]2p +1 }n—2p—1mp+ o

Then

S.o=value of y when 2 is 1=2""!

d, .
S,.,=value of E% when x is 1=(n—1)2""*
and in general

S,.,=value of E é— when x=1
Now g<n. Hence
dar (1~ ‘/x) =0 wh

CZM / z

en ¥x=
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Therefore

8, = 1 [d! (1+\/m)-]

=2 V7 e

et Az

Also we see that v, is a rational integral function of (r*—a®—0?)
When one sphere is inside the other the series for Q is still convergent.
12. When the spheres are concentric

PI=Ty= 0 A=

$1=0 ¢,=0

and

whenece

"ML o2
SMwt s (12)

which agrees with the result found by STokES in his paper of 1843 before referred to.
When the inner touches the outer A=0 and

Q—oc32(n+ e 2503 loggI‘(l-{-w)
=—1 15129903 long‘(1+w) e (13)
where
__b
R

If 2 is an integer = m say
— 3 n 1 —3d e n 1
Q=m?{S;—3,; [ =17 2020569 s, fir

a finite expression, and in this case

In the particular cases

a=3 Q= ‘61645
2
3
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2m+1

If  is of the form 5

Q=(2m+ 1)3{8’3—20”‘(2%1 1>3}

. 1 5

Also a finite expression, and in this case

_2m-—-1

a=5 b

In the particular cases
a=1b Q="39859

a=32b Q="84585

The expressions for QQ directly in terms of =, a, b are the same functions of
a?+40*—1r? as the corresponding expressions for external spheres are of 72—a?—D2

13. The series for Q' may, as in the case of ), be shown to be convergent.

When the spheres are in contact

o ab \®
='T_S‘ S3=(m> S3 . . . . . . . . . (14)

Also the general term in », @, b is given by
_ (2ab) . n=Tgnpn
U= | p"" rS(—1)S, pligt—te=2 " " (15)

23 Ty P )

It is easily seen that both Q, Q for external spheres diminish as z—qi.e., »
increases.
aQ dQ’ .
Hence for external spheres T g e both negative.

When one sphere is inside the other, Q decreases as  increases—.e., as » diminishes,

. . aQ . "
Hence in this case 2, 1s positive.

The values of the first three terms of Q, Q are

ab 13 X 3 a3 3
for Q@ {7’2 - bg} ’ { (1 —0%)? -—-a%ﬂ} ’ { 28 + ot — 2a*% — a'D? }

, ab\3 [a*h%\3 a’b? 3
and for Q <7> ) (;ﬁ) ) {m}

(16)
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. aQ, dQ’
14. We may easily find &‘%1, -d?— at contact of the spheres. If Q, denote the n'™

term of Qy, then it may be shown that,  denoting ;’:z__b

dQu.__  n+1D)(n—1+32) ,
dr ~ afn+ayt @

aQ,_ _w=1+30(1=0) ,

addr an®

Q@ dQ, dQ'

at contact are
dr’ dr’ dr

both of which are of the order 7—1; Hence the values of

=—o. But though this is the case, the value of ;%;(Ql—g—sQ') at contact is finite.

The ' term is’

2(n+1)(n—4) +3(1 —)(n+2)* + (n* =1)(67° + dnw + 2*)z 3
and(n+x)t

which is of the order %lz, and therefore the whole sum is finite. Also when 752 the

nth term is positive, when n=1 the sign depends on the value of . But by consider-

ing the values of Q, &c., in terms of 7, expanding them in ascending inverse powers of

’

. d 1 . .. .
7, it can be shown that d—;(Q_bBQ) is positive always. Further, at contact Q—% is
a negative quantity, whilst at an infinite distance it is zero. Hence, on the whole, it -

. . . . . 1.,
must increase with =, and if this takes place continuously, (%(Q— 5Q> would always

be positive. Though I have convinced myself that such is the case, I have not been

able to prove it in general. When the spheres are at a great distance the values of

Q and Q' depend only on their first terms, and Q—(%SQ’ only on the term of Q’, which

. b - . . . "
is of the order et Hence here also the differential coefficient is positive. I have cal-

culated and laid down curves representing the magnitudes of the Q and Q'-functions

in the case of equal spheres, and when the radius of one sphere is twice that of the
. 1 . .
other, and in both cases the value for (;3((2— ;Q’) comes out positive for all distances.

In what follows we shall suppose that this quantity is always positive, but it must be
understood throughout as only proved for the case of equal spheres and the case in
which the radius of one sphere is double that of the other.

15. Although the rapidly increasing complexity of the successive images when the
spheres move perpendicularly to their line of centres would lead us to regard the
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problem of finding the energy in this case as almost hopeless, yet we can carry the
approximation to any number of images with less labour than might at first sight
appear. For suppose we wish to take into account 2n images in A, due to A’s
motion, that is on the whole 47 reflections. We need only first calculate the distribu-
tion of doublets for a general position of the original one, in the »™ image in A, and
find the amount of the first % images. We can then treat the second portion of the
2n images as the images resulting from the different parts of the n™ image, and
employ our first result to find the amount of the second portion by a single integra-
tion. Suppose we proceed as if we were going on indefinitely: we suppose an original
doublet in A at a distance p and calculate the density of the parts of the first image
in A, say f(r) at a distance », and thence its amount. We employ this result to find
the density at any point of the second image, regarding it as made up of images of the
different parts of the first, and this we do by using the expression found before, sub-
stituting for the original doublet at p, an amount f(r)dr at a distance », and integra-
ting with respect to » over the first image. Thus we find the distribution for the
second image and its amount, and therefore the amount for the first two images
together. Starting now from this, and proceeding in the same way, we find the dis-
tribution and amount of the first four images, then of the first eight, and so on.
Thus to find the distribution of the 27th image we only require p-41 operations, and to
find its amount only p operations. Kven with this method of proceeding the work
would be exceedingly laborious. But for all practical purposes the first two images in
A, i.e., the motion due to four reflections, will be sufficient—except when the spheres
are in contact. We proceed then to find the values of the coeflicient of #* and of v, v,
to this degree of approximation.

Suppose we have at P inside A a doublet £ at a distance p, from A, whose axis is
perpendicular to A B. v

3
i. First vmage in B.—Then we have at Q,, its inverse point in B, a doublet (BZ;) > k

and a line doublet thence to B, whose line density = —%E—%
1

ii. Furst ymage vn A.—The image of this in A consists of two parts, that depending
on the single doublet in B, and that depending on the line doublet.

(2) Image of Q..—A doublet at P <AP2_.

. . ab
m;) whose magnitude is ( AQ, B,
3 v
a negative line doublet from P, to A whose line density = _~ <—b-> AI()Q
1
(B) Image of negative line doublet.—At a distance » from B we have a negative
ko7

doublet =——b— ]?13— dr. This has (1) a negative doublet at a distance from A= 5_%—1%

3
) k, and

equal to —(— ~——0l7" That is from P, to A we have a negative line doublet
9 c—r) b BP, &

whose density at a distance R is
MDCCCLXXX, 3 Q
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e Nk v odr
¢c—r/ bBP,dR

a?
and c—7 =5
@
"dRTR?
. k cR—a?
density = & TP,
(2) a line doublet image of each portion. The doublet — b BP —dr produces a positive

k rdr R

2
line doublet from a distance R’::;%. to A, whose line density AT —

Hence the density at a distance R, due to this part, from the whole line doublet
in B

a” Cbb BP c—17

b BP {c Og —¢ <R—Pz>}

Hence finally the density at a distance R from A of the resultant line doublet

—E(DNER kR b R{ ! o2 L)1
== \BP,) 3Q,” @ BP, "ab BP,|° Og —\ R0

ER /BN kR
'"ZXQ}'(BP) ab BP, {CIg " BQ‘}

and the whole amount

_k 1 /b BQ,

= j { 10, <BP> i — i, 18 }hdh
— 1l ab  \3,, BQd PR

- 2\AQ,BP,) T 2BPLAQ? *1.BP.AQS

So that the whole amount of the image is

v ab o )
"~"<AQ1.1-;P ) +461’P XL 2BQ)A
or substituting for AQ,, &c., in terms of p,

, ab a3(c—cp, — 207)
| 1
( —b2— > + 4b(P—b*—c p1>2k
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For the first image in A, p,=0
Hence
b 32— 2%)]
=t (G Pk - . (D)

The density at any point of the first image is

E{ 1
_‘;{02_52 bzlog }R

together with a doublet ( ) k at a distance p,

The amount of that part of the second image in A which depends on the latter is

1{ ab 8 +a3(09-—cp2——2b9) ab 3k
P\ =b—cp,) T 20(E =B —cpy) [\ —1°

and the amount of the part due to the portion of the former at a distance R is

_ R ab 3 a’(*— 202 —cR) 1 Ps
2a{<c”——62——cR> +26(c9—b2——cR)2}{02—b2 518 R }RdR

whence the whole amount due to the former

kbl &P (P—1R) a®h(c® + %) P a?’:' { 1

P2
- 2ac§0[(cz—bz—cﬁ)3 2(E—0P—cR)* T 2(F—b*—cR) 2 ||A—p* 1
_ ka PE—8)  be+P) R
4A(F=) (P—b—cR)* F—0—cR b

log }CZR

l g (*— bz-—cR)J

Pa
log 2
Fa? C’P
+-@~S ¢————dR

45 Jo F—0*—cR
kot (pa. py d [ D(—1%) b+ R, b
4bc’3§0 1 R dR{(09——62——01{)2—02—1)2—01{ b +09—b9} R
ka®b* la? 20° 2b2 —c? D¥(H*—2¢%)
- 4P =D —cpy)® T 4(*F—07) { *—b*—cp, + Pz+ *(c*—0?)

PP ka? 1 16 *
.._.._______.32 .___&_,.
+2 log } 15 S 2 xdw

0 P2
"a%c?
Now cpy= 2y =0ca say.
Then the above is
3q2
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kot w \? | R ka? (1 log
=—47-4<1_a2’> +4cg{-—~+2(a2_bﬂ)—‘-‘-“-+ 4 2(c—1) 1og(1—a2)}-12‘—2§ 222 g
F

. . » b
Wherefore the whole amount of the second image in A, is <Wr1t1ng B=7 f?ﬂ)

R B

ol 1log o
+2<bz+ )BZ 18+ o log (1—of) — fbgs e, L (19)

- =&

0"‘2

Substituting for% and % in (7) we get the part of T depending on v? correct to
0 0

the second image in A. Interchanging ¢ and b, the part depending on v,? is found,
In the case of equal spheres

m__1 a® \3 = a?(*—2a%)
w2 \e—a? +2(02——a2)9

P 1ps ) @+ (P—a?)? P
i L e R e
ab at 1log =
+(c2—a2)202+2(02 log (1—a?)— %S 1 da
'72—{1/’
o

16, To find the value of the coeflicient of the term in v, v, we need to find the
amounts of the images in B due to the motion of A, and vice versd.

The first image in B of t in A at a distance p, is <BI;> k at Q, and a negative line

doublet thence to B, whose line density is —%E%

1
The whole amount is therefore

b \3 b \3 b \3
(s5,) 24 (5m,) =4 (25

3
For the first p;=0 and /i—‘:—%-(%) k
0

To find the amount of the second image in B we start from the first image in A

3
already found. This is, as has been shown, a doublet at p2=< c;a:bﬁ> k and a line

doublet thence to A, whose line density is

¢ p_BQ\ 1/ kR
{b.]sn(log R ¢ > AQ1<BP> }
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The amount in B from the former is

ab® 3
Hemsemm! b

Pa b 3 l &_ b @
%IO (:-—I%) {blog R 02—62} a R

_[ p c=p Upg?
= feoa b log 02~(02_.Z,2)(6_p2)2}

and from the second is

opy F=U—cepy | 41 0—82}
F—B f—py TEIB T

I A Gl o T 3
T dae {02"‘2’2 (F—a®—b*)? +ilog <'1 T oA }

LY AN L
o _2{c(cg—a2—b2) +4ac{ e

So also

4be

v, e(*—a?—b%) F—af (P—a? =% T2 A —a?

Whence from (8)

L'= 2'n'bs<l/1 * ,u,'2> +27a? <lid£2>

Yy Mo

g [aB\ WP 3o (F—af —b?)?
= () + o)~ e

a®b?

+m{02(a9+b2)—20&%2-—02(02?“2-!-02—?#)”. . (19)

Similarly can be found the coefficient of ©* when one sphere moves inside another.

Motion in the line of centres.

17. When the two spheres are moving in the line of centres the kinetic energy is
given by
2T=Au>+ A, u,>—2Bu,u,
where

A =m+Lm/, { 14+ 3Q<§I.q>}
B={M'Q(9)
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and m,, m;, M’ respectively denote the mass of the sphere (A), the mass of fluid
displaced by it, and the mass of fluid in a unit sphere.
It is to be remarked that A;, A,, B are functions only of the distance between the
spheres, and that therefore (—;—il--[- L%: 0. Since no forces are supposed to act on the
V2
system, both the energy and momentum are constant. Hence

2T = constant

(20)

T . oT
—+ = constant =d

oT

7

oT
The last equation also follows at once from LAGRANGE'S equation since —"+ =0,

and may be written
(A—B)u,+(Ay,—B)uy=d

We shall transform these equations by referring the motion to the velocity of an
arbitrarily chosen point P between the spheres, and the distance between them.

Let P divide the distance (r) in the constant ratio S Then if « is the

ol
: L= g
distance of P from the origin, u its velocity

r=x+tar, x=x—0Fr
and

wy=u-or, uy=u—fr
whence ’
(Ar+A,—2B)ui+ (A0 Ay*+208B)r
+2{a(A,—B)—B(A,—B)jur=2T %. . . . (21)
(A +A,—2B)u+{a(A,—B)—B(A,—B)}r=d

which we shall write
p102+q3°2+ 2ur=2T
pu+ lr=d

whence
(pg—P)r*=2Tp—d?

— 2p—d
7-:1:/\/<A1A2__B2> e e e e e (22)

in which we are to take the positive or negative sign according as the spheres are
separating or approaching one another. The spheres will move as if they repel or

or
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. . d [ 2Tp—d?
attract one another relatively according as (Zr{ AA,—T

condition does not depend on their relative motion at any time, but only on their

distance and the ratio of the constant energy to the constant momentum. The above

condition may also be expressed, writing = K, as the sign of

} is positive or negative. This

d JAA dA daB
LA —B) = { (o= B+ (A, =B +2(A,~B) (A= B)} |

The last term is positive, for A;, A,, B all decrease as r increases. Now % must
always be <p since r is always real. If we put F*=p=A,+A,—2B in the above,
the criterion reduces to the sign of

(A4, —B?) 7 (A +A,—2B}
we., since AjA,—B? is always positive to the sign of
1 : d ;
(A =B)+ 2 (4,—B)

Now we are led to conclude from the argument in § 14 that d%(Al—B) ... are

always positive. Hence when % has its greatest possible value the criterion is positive,
much more then is it so for any other value of k. Hence we are led to conclude that
whatever be the relation between the momentum and energy the spheres always move

so that 7 tends to decrease, whilst in the case of equal spheres, or that in which the
radius of one is twice that of the other, we know for certain that such is the case.
We cannot prove from this that the spheres move with reference to a fized point as if
they repel one another, for it might happen that both the spheres might be accelerated,
the extra energy of the motion of the spheres themselves being taken from the fluid
motion ; or that both are even retarded. We can easily show, however, that both

cannot be accelerated if 7 is positive and both move in the same direction, for the dis-
tance in this case increases, and therefore so do A;—B, A,—B, and hence because

(A;—B)u;+(A,—B)u, is constant u,, u, cannot both increase. Also if 7 is negative
and u,, u, of the same sign the same result holds.
In the case where the spheres are projected so that the momentum is zero

o _2Tp
AA,—B?

and the relation between the velocities of projection that this may be the case is
given by
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w__ Ay—B
n;— A,—B
When the spheres are equal u,= —wu, and the motion is the same as that of a single

sphere in a fluid bounded by a plane, and moving perpendicularly to the plane.
For this particular case

or if u denote the velocity relative to the fixed plane r=2u, and

e T ___(A+B)0
A+B~ A+B °

where (A-4B),, v, are the values of A+B, and u at the point of projection. If the
sphere is projected from contact with the plane

(A4B)y=m~+Lm 4+ 3m'(Z8;— 14£S;)
=m-3m’+3030853m’
=m-803085m’

and at an infinite distance

A+B=m+im

Hence the ratio of the limiting velocity to the initial velocity is

,\/{1+ 60617072 +1}

where p is the density of the sphere.

For densities 0, 1, 10, the values of this ratio are respectively 1'2661, 10963,
1:0143. The greatest value is when the density of the sphere is zero, and the least
is when m’=0 (no fluid) or m= o, the ratio then being, as it ought to be, unity.

In the case where the spheres are unequal and projected with no momentum from
contact their initial velocities must be opposite and in the ratio of the quantities

my +%m’2"%m'293{%])3 log, T'(1 +y) 455}
and ’

'y — §m/ @ {3DS log, T(14-2) 48y}

@ and ¥ denoting the quantltles b T
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If a=2b, x=1, y=2, and we find from LeceENDRE’s tables of the Eulerian integrals

D3log, I(14-ax) = —"485
and the ratio is
1 p+1174
8 p+ 4642

which when the densities of the spheres and fluid are equal becomes

763
5 = 0954

We find the velocities of the spheres relatively to the fluid by eliminating w
between

Uy =u-4 o
and
putlr=d
whence '
d. A—B -
Uy =- r
! 10+ )
and
d A—B-
Uy=——"L—
p p

Suppose now the same spheres projected with the same initial circumstances except
that now the spheres have changed places, and let 'y, w/; be the corresponding velo-
cities at the same distances. Then

,_4d AI—B,}:‘

[T
p ' op

since d and  do not depend on the question which of the two is foremost.

Now if a>b we see at once from the expressions given for A;, A, in terms of the
distances that A; > A,, and hence that the foremost will be most accelerated when it
is the smallest.

If now wy, u, denote the velocities at any moment which we may regard as the
velocity of projection
@ _{(A=B)u+ (A —Bu,}*

2—- —
b= 2T A+ Agu,®—2Buju,

Writing ¢ for the ratio - the equation to find £, in order that £ may have a given
2
value, is

MDCCCLXXX. 3 R

(22
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(A, —B)(A,—~B)+#B

| (A, —BP—#A,
E 2 L —By—A §+(Ai—B)9—k2Ai

This enables us to find within what limits £ must lie, for & must have real roots,
and therefore

{(A—B)(A;—B)+ B}~ {(A,—B)*—#A,} {(A,—B)*—#*A,} > 0

(A A, —BY (p—k) >0

Hence £* may be any positive quantity less than p. The greatest possible value of
this is when the spheres are infinitely distant, and then

p=myFmy5(m +m’y)

To each value of £ will correspond two states of motion, the initial velocities in each
case being opposite. For example, if € is positive, i.c., both velocities in the same
direction, the two states will be when («) is the foremost, and when (b) is the foremost ;
if £ be negative, the two states will be, one in which the balls begin to move towards
each other, the other in which they begin to move from each other. Thus for every
given value of t there are four possible states of motion.

If ever u;=0 then £=0, and the spheres must be at such a distance that

(A,—B)— A, =0

Now, supposing % given, this can only happen if %* lies between the greatest and
(A, —B)?

2

“

greatest when they are at an infinite distance, the value then being mg=5m’,.

least values of The least value is when the spheres are in contact, the

. . (A, —B)?
If w,=0, then %* must lie between the greatest and least values of <~—1~A—~]§2" Now
' 1

(Ay—B)*, (A, —B)
A, <A

(A Ay~ Bz)(Az—“Al)EO
ag
A2hy

If we suppose a>b then A;> A, and calling &% k,? the least values of the above
limits & <F.
Hence if

_-gh 4
/\/gT<kl or >my+Lm’



MR. W. M. HICKS ON THE MOTION OF TWO SPHERES IN A FLUID. 487

the spheres can neither ever come to rest; if
& /
§T<k2 or >my—+4m/,

the small sphere can never come to rest.

The effect of the fluid on vibratory motions.

18. Suppose each of the two spheres attracted to a fixed centre of force where the
force varies as the distance. Let @, =, be the distances of the spheres at any time
from their respective centres of force measured in the same direction. Then

2T =A u,*+ Au,?— 2Bu, 1y = C—myu, 2, > — mMopqtty?

Also since we neglect squares of small quantities in finding the small vibrations, the
equations of motion become

— B, + Az, = —mypay
and we suppose the spheres so distant, and their motions so small, that we may neglect
the small changes in A, B during the motion. The spheres must not be too close, for
dA . . .
at contact E%’ &c., are infinite, as was shown in § 14.

Solving the above equations in the usual manner we find

=L, sin (K;¢4+a)+N, sin (Kyt+8)
xy=eL, sin (Kt +a)+¢'N; sin (Kyt+8)

where
K;? — Agmgug + Agpymy £ v/ {(Aymgpg — Agin py)? + dmymmgu, pa B2}
K,? 2(4,A,-B?)
o— AKP=—mu,  BK? 6,=A1K22 — My BK,?

BK? T AKP—mgpu, BK2? T AKpR—mgpu,

From this we see that, to the first order of small quantities, the mean position of
the spheres is not altered, or to that degree of approximation there is no mean
attraction or repulsion.

If we regard the spheres as two pendulums swinging in the fluid, in the same
horizontal line, of lengths [, ,, then the motion is given by the above equations if
we write
3 R 2
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_pa=lyg _p—lyg
1 b , Ha P

where p,, p, are the densities of the spheres compared to the fluid.
If in the above we make m,=c we get the case of a forced vibration of perio %
In this case
N;=0 Kp=p, Kzgzzng—'%

A2
2y =Lsin (y/ut+a)

B, Lsin (v/ut+a)+N sin ( Z?\EH-,B)
. ']

Ly =
2
Azl"l Mg fhy

If the sphere (b) is set free when (z) is for the moment at rest, and the time be
reckoned from this moment

Ly= eL<cos /gt —cos M fﬁj@t)
2

and the motion of (b) consists of two periodic terms whose amplitude is e times that
of (a).
Let now the strength of the centre of force on (b) diminish indefinitely. Then

B -
x2=~A—2L(cos A it —1)

and (b) would oscillate in the same period as (@), without being attracted or repelled
towards it except by forces depending on the square of the amplitude of (). To find,
then, whether the action of (a) on (b) is attractive or repulsive we must take account
of quantities of the second order of small quantities.

The full equation of motion of (b) is

N - dA d
Agttg—Buy — (hug® —uyu,) “g;,g'l' %E,(Al —2B)u,*=0
For a first approximation we have
B —
m2=K—L(cos vV pt—1)
R

BL ,_ . _
Uy= _A—\/ﬂq sin y/pt
2
Write

B .
mg=IL(cos Vit—1)+2
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where z is of the order L* at least. Substituting for z and neglecting cubes and
higher powers of L,

A, , BL — dB —
4 gdaﬂ 'u Lcos t+—drLyu, cos \/ut
My dr 4 1

B? B\dA, . _ d ) B
—1iL I/«1< A —2— A2>Eg sin® \/Mlt.+%L2/J,1d—;( A, —2B) sin® /jt=0

and

B\ — . BL
dr:ml—%:L(l _K-z) cos /4 ™
Whence the equation takes the form

Ag‘z'=f+g 08 / t+h cos 24/ u

% B\/B dA, dB B \dA, ,d
Lz/"’l (1 A><A dr d7>+2A <A _2> dr 'éd,,(Al—ZB)

d/AA,—B?
d'r A,

in which last form we may neglect in A, the m,+2m’; as it disappears in the differen-
tiation. Hence the mean action of (a) on (b) is an acceleration towards ()

where

_ Dy d/AA DB
4A, dr A2
_ _ ("L 1 d [AA,—B
T OA\T/ A dr A,
v od AlAz—BQB
A dar A,

if v is the “ velocity of mean square” of  (a).
If the distance of the spheres is so large that we may neglect twelfth and higher

inverse powers of the distance, we need only consider the first tmages or the first
terms in A and B. In this case it will be found that the acceleration to (a) is

182 fa\o[ A 3 _1} .
=511l {(72_62)4 Siaf - - (29

To find when there is repulsion

78 3

(742_52)4 < 2P+J’
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or

b
RARYES

- which can clearly only happen if 2p+1< 8 or the density of the sphere less than the
fluid.

In general, then, when the body is denser than the fluid it is attracted. If its
density is less than the fluid there will be a critical point (as mentioned by Sir W.
TromsoN), beyond which there will be repulsion, and within which it is attractive.
This critical distance is given by

,?fl—- b

= P
— 2p+1

/\/{1 /\/ 2 }

in using which it must be remembered that if 7 comes out nearly equal to b, the
formula fails to give a correct value, as it was obtained on the supposition that the
distances were large. It is, however, extremely accurate if we remember that it is
true up to inverse powers of the twelfth at least. If the density of the sphere be 9
the critical distance would be 7:648 times its radius. It may be noticed that while
the principal term in the acceleration depends on 777, if the density be the same as
the fluid it depends on #~9

In the case of a sphere vibrating within another sphere, along the line of centres,
the effect of the fluid will be represented by supposing the inertia of the sphere
increased by a mass

=1{143Q(¢.q)) X mass of fluid displaced by it

(24)

where @ has the value given in § 9: provided it is not close to the boundary of the

containing sphere, as in that case ;Z? becomes infinite, and the small motions of the

sphere will produce great changes in the value of Q. When its mean position is the

centre, ?gzo and Q may be considered constant when we neglect in our equations of

motion cubes of small quantities. The value of Q in this case is, as has been already
mentioned,

b bg+ >< mass of fluid displaced

2 b3 —
The foregoing serves to solve the problem of a ball pendulum within a spherical
envelope when it is so suspended that its centre lies in the horizontal line through the
centre of the envelope. When it oscillates in any other position the value of the
coefficient of inertia may be approximated to as in §§ 15, 16.
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19. If instead of supposing the sphere (b) free to move we suppose it held fast, and
require to find the force necessary to do so, we get a different result from the fore-
going. Suppose the sphere (@) moving in any manner, the sphere (b) being for the
moment at rest, and suppose a constant force F acting on b.

The equation of motion for B is

. dA d 3
Az, — B+ Suy(2u, —uy) -d—?—g + %ulgd_r (A,—2B)=F

Suppose now that F is of such a magnitude that u, being zero it makes #, also zero.
Then F is the force required to keep () at rest at the moment when the motion of («)

is given by 4, .701 Hence
F=—Bi5+bu,*+ (A,—2B)

Let 2,=L sin K¢, L being small. Then neglecting cubes of small quantities
F__<B+‘ZB d¢~>LK2 sin Kt} & (A, —2B)L2K? cos® K
dr=ax,=L sin K¢

. F=BLK?sin Kt+%L9K2{%?— %%{Al—zB)} X cos 2Kt

This is the force at the time ¢ necessary to keep (b) at rest. Hence the mean force

is a force =112K®—- Al towards (OL) which is equal and opposite to the force of (a) on

dA,
(). =

Taking for A, only the first term of Q, which is equivalent to neglecting twelfth and

higher inverse powers of »
Ay =my+ L/, {1+3< ub >3}

a3
(=)t
v2 alh3r

g (,,'2 b2)4

and the force

— ’
=9m/V?

X weight of fluid displaced by ¢ . . . . . (25)

For example, for equal spheres at a distance 4a (distance between their surfaces
=2a), the mean square of velocity of («) being the same as for oxygen at a tempe-
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rature of 0° C., v=1524 feet per 1”, and the force =%6 X weight of fluid displaced, o

being measured in feet. It is clear that while the force decreases indefinitely with
the size, the ““effective ” force increases indefinitely.

If (@) vibrate through a distance y%-inch, 256 times a second, and @=21-inch, the
force is *01197 weight of water displaced = weight of 12'8 milligrammes.

In the same manner can be found the action of () on (b) when « describes any

small curve whose plane contains (b).

Varugs of Q, Q for equal spheres.

¥ 1

9 o Q s
1 1 ‘051800 150257
1:05 72985 028307 116749
11 ‘6418 ‘018768 098312
12 5367 009531 073754
1-35 *4431 004049 0511
15 3819 *001959 037142
1-75 ‘3138 0007023 023335
2 2679 0002962 015631
25 2087 0000723 008001
35 1459 ‘0000090 002895
45 ‘1125 0000019 | 001373

Varuzs of Q), Qq Q when a=20 for external spheres

7 1 1,
cﬂl;ﬁb Qv Qz' ad Q/- b3 Q.
1 ‘0206 0945 04452 35616
1-05 *01228 04298 03393 27144
11 100862 02572 02884 23072
125 003653 ‘00886 ‘01918 15344
15 000719 00119 01090 08720
2 ‘000186 00024 ‘00455 103643
3 .. .. 000016 ‘00013

Varuss of Q when b=2¢ for an internal sphere.

., Q.

0 ‘142870
25 ‘15106

5 ‘18046

75 25676

1 ‘61645



